原文:50 Shades of Go: Traps, Gotchas, and Common Mistakes,翻译已获作者 kcqon 授权。
不久前发现在知乎这篇质量很高的文章,打算加上自己的理解翻译一遍。文章分为三部分:初级篇 1-34,中级篇 35-50,高级篇 51-57
前言
Go 是一门简单有趣的编程语言,与其他语言一样,在使用时不免会遇到很多坑,不过它们大多不是 Go 本身的设计缺陷。如果你刚从其他语言转到 Go,那这篇文章里的坑多半会踩到。
如果花时间学习官方 doc、wiki、讨论邮件列表、 Rob Pike 的大量文章以及 Go 的源码,会发现这篇文章中的坑是很常见的,新手跳过这些坑,能减少大量调试代码的时间。
初级篇:1-34
1. 左大括号 {
一般不能单独放一行
在其他大多数语言中,{
的位置你自行决定。Go 比较特别,遵守分号注入规则(automatic semicolon injection):编译器会在每行代码尾部特定分隔符后加 ;
来分隔多条语句,比如会在 )
后加分号:
1 | // 错误示例 |
./main.go: missing function body
./main.go: syntax error: unexpected semicolon or newline before {
1 | // 正确示例 |
注意代码块等特殊情况:
1 | // { 并不遵守分号注入规则,不会在其后边自动加分,此时可换行 |
2. 未使用的变量
如果在函数体代码中有未使用的变量,则无法通过编译,不过全局变量声明但不使用是可以的。
即使变量声明后为变量赋值,依旧无法通过编译,需在某处使用它:
1 | // 错误示例 |
3. 未使用的 import
如果你 import 一个包,但包中的变量、函数、接口和结构体一个都没有用到的话,将编译失败。
可以使用 _
下划线符号作为别名来忽略导入的包,从而避免编译错误,这只会执行 package 的 init()
1 | // 错误示例 |
4. 简短声明的变量只能在函数内部使用
1 | // 错误示例 |
5. 使用简短声明来重复声明变量
不能用简短声明方式来单独为一个变量重复声明, :=
左侧至少有一个新变量,才允许多变量的重复声明:
1 | // 错误示例 |
6. 不能使用简短声明来设置字段的值
struct 的变量字段不能使用 :=
来赋值以使用预定义的变量来避免解决:
1 | // 错误示例 |
7. 不小心覆盖了变量
对从动态语言转过来的开发者来说,简短声明很好用,这可能会让人误会 :=
是一个赋值操作符。
如果你在新的代码块中像下边这样误用了 :=
,编译不会报错,但是变量不会按你的预期工作:
1 | func main() { |
这是 Go 开发者常犯的错,而且不易被发现。
可使用 vet 工具来诊断这种变量覆盖,Go 默认不做覆盖检查,添加 -shadow
选项来启用:
1 | go tool vet -shadow main.go |
注意 vet 不会报告全部被覆盖的变量,可以使用 go-nyet 来做进一步的检测:
1 | $GOPATH/bin/go-nyet main.go |
8. 显式类型的变量无法使用 nil 来初始化
nil
是 interface、function、pointer、map、slice 和 channel 类型变量的默认初始值。但声明时不指定类型,编译器也无法推断出变量的具体类型。
1 | // 错误示例 |
9. 直接使用值为 nil 的 slice、map
允许对值为 nil 的 slice 添加元素,但对值为 nil 的 map 添加元素则会造成运行时 panic
1 | // map 错误示例 |
10. map 容量
在创建 map 类型的变量时可以指定容量,但不能像 slice 一样使用 cap()
来检测分配空间的大小:
1 | // 错误示例 |
11. string 类型的变量值不能为 nil
对那些喜欢用 nil
初始化字符串的人来说,这就是坑:
1 | // 错误示例 |
12. Array 类型的值作为函数参数
在 C/C++ 中,数组(名)是指针。将数组作为参数传进函数时,相当于传递了数组内存地址的引用,在函数内部会改变该数组的值。
在 Go 中,数组是值。作为参数传进函数时,传递的是数组的原始值拷贝,此时在函数内部是无法更新该数组的:
1 | // 数组使用值拷贝传参 |
如果想修改参数数组:
- 直接传递指向这个数组的指针类型:
1 | // 传址会修改原数据 |
- 直接使用 slice:即使函数内部得到的是 slice 的值拷贝,但依旧会更新 slice 的原始数据(底层 array)
1 | // 会修改 slice 的底层 array,从而修改 slice |
13. range 遍历 slice 和 array 时混淆了返回值
与其他编程语言中的 for-in
、foreach
遍历语句不同,Go 中的 range
在遍历时会生成 2 个值,第一个是元素索引,第二个是元素的值:
1 | // 错误示例 |
14. slice 和 array 其实是一维数据
看起来 Go 支持多维的 array 和 slice,可以创建数组的数组、切片的切片,但其实并不是。
对依赖动态计算多维数组值的应用来说,就性能和复杂度而言,用 Go 实现的效果并不理想。
可以使用原始的一维数组、“独立“ 的切片、“共享底层数组”的切片来创建动态的多维数组。
使用原始的一维数组:要做好索引检查、溢出检测、以及当数组满时再添加值时要重新做内存分配。
使用“独立”的切片分两步:
- 创建外部 slice
对每个内部 slice 进行内存分配
注意内部的 slice 相互独立,使得任一内部 slice 增缩都不会影响到其他的 slice
1 | // 使用各自独立的 6 个 slice 来创建 [2][3] 的动态多维数组 |
- 使用“共享底层数组”的切片
- 创建一个存放原始数据的容器 slice
- 创建其他的 slice
- 切割原始 slice 来初始化其他的 slice
1 | func main() { |
更多关于多维数组的参考
go-how-is-two-dimensional-arrays-memory-representation
what-is-a-concise-way-to-create-a-2d-slice-in-go
15. 访问 map 中不存在的 key
和其他编程语言类似,如果访问了 map 中不存在的 key 则希望能返回 nil,比如在 PHP 中:
1 | php -r '$v = ["x"=>1, "y"=>2]; @var_dump($v["z"]);' |
Go 则会返回元素对应数据类型的零值,比如 nil
、''
、false
和 0,取值操作总有值返回,故不能通过取出来的值来判断 key 是不是在 map 中。
检查 key 是否存在可以用 map 直接访问,检查返回的第二个参数即可:
1 | // 错误的 key 检测方式 |
16. string 类型的值是常量,不可更改
尝试使用索引遍历字符串,来更新字符串中的个别字符,是不允许的。
string 类型的值是只读的二进制 byte slice,如果真要修改字符串中的字符,将 string 转为 []byte 修改后,再转为 string 即可:
1 | // 修改字符串的错误示例 |
注意: 上边的示例并不是更新字符串的正确姿势,因为一个 UTF8 编码的字符可能会占多个字节,比如汉字就需要 3~4 个字节来存储,此时更新其中的一个字节是错误的。
更新字串的正确姿势:将 string 转为 rune slice(此时 1 个 rune 可能占多个 byte),直接更新 rune 中的字符
1 | func main() { |
17. string 与 byte slice 之间的转换
当进行 string 和 byte slice 相互转换时,参与转换的是拷贝的原始值。这种转换的过程,与其他编程语言的强制类型转换操作不同,也和新 slice 与旧 slice 共享底层数组不同。
Go 在 string 与 byte slice 相互转换上优化了两点,避免了额外的内存分配:
- 在
map[string]
中查找 key 时,使用了对应的[]byte
,避免做m[string(key)]
的内存分配 - 使用
for range
迭代 string 转换为 []byte 的迭代:for i,v := range []byte(str) {...}
雾:参考原文
18. string 与索引操作符
对字符串用索引访问返回的不是字符,而是一个 byte 值。
这种处理方式和其他语言一样,比如 PHP 中:
1 | php -r '$name="中文"; var_dump($name);' # "中文" 占用 6 个字节 |
1 | func main() { |
如果需要使用 for range
迭代访问字符串中的字符(unicode code point / rune),标准库中有 "unicode/utf8"
包来做 UTF8 的相关解码编码。另外 utf8string 也有像 func (s *String) At(i int) rune
等很方便的库函数。
19. 字符串并不都是 UTF8 文本
string 的值不必是 UTF8 文本,可以包含任意的值。只有字符串是文字字面值时才是 UTF8 文本,字串可以通过转义来包含其他数据。
判断字符串是否是 UTF8 文本,可使用 “unicode/utf8” 包中的 ValidString()
函数:
1 | func main() { |
20. 字符串的长度
在 Python 中:
1 | data = u'♥' |
然而在 Go 中:
1 | func main() { |
Go 的内建函数 len()
返回的是字符串的 byte 数量,而不是像 Python 中那样是计算 Unicode 字符数。
如果要得到字符串的字符数,可使用 “unicode/utf8” 包中的 RuneCountInString(str string) (n int)
1 | func main() { |
注意: RuneCountInString
并不总是返回我们看到的字符数,因为有的字符会占用 2 个 rune:
1 | func main() { |
21. 在多行 array、slice、map 语句中缺少 ,
号
1 | func main() { |
声明语句中 }
折叠到单行后,尾部的 ,
不是必需的。
22. log.Fatal
和 log.Panic
不只是 log
log 标准库提供了不同的日志记录等级,与其他语言的日志库不同,Go 的 log 包在调用 Fatal*()
、Panic*()
时能做更多日志外的事,如中断程序的执行等:
1 | func main() { |
23. 对内建数据结构的操作并不是同步的
尽管 Go 本身有大量的特性来支持并发,但并不保证并发的数据安全,用户需自己保证变量等数据以原子操作更新。
goroutine 和 channel 是进行原子操作的好方法,或使用 “sync” 包中的锁。
24. range 迭代 string 得到的值
range 得到的索引是字符值(Unicode point / rune)第一个字节的位置,与其他编程语言不同,这个索引并不直接是字符在字符串中的位置。
注意一个字符可能占多个 rune,比如法文单词 café 中的 é。操作特殊字符可使用norm 包。
for range 迭代会尝试将 string 翻译为 UTF8 文本,对任何无效的码点都直接使用 0XFFFD rune(�)UNicode 替代字符来表示。如果 string 中有任何非 UTF8 的数据,应将 string 保存为 byte slice 再进行操作。
1 | func main() { |
25. range 迭代 map
如果你希望以特定的顺序(如按 key 排序)来迭代 map,要注意每次迭代都可能产生不一样的结果。
Go 的运行时是有意打乱迭代顺序的,所以你得到的迭代结果可能不一致。但也并不总会打乱,得到连续相同的 5 个迭代结果也是可能的,如:
1 | func main() { |
如果你去 Go Playground 重复运行上边的代码,输出是不会变的,只有你更新代码它才会重新编译。重新编译后迭代顺序是被打乱的:
26. switch 中的 fallthrough 语句
switch
语句中的 case
代码块会默认带上 break,但可以使用 fallthrough
来强制执行下一个 case 代码块。
1 | func main() { |
不过你可以在 case 代码块末尾使用 fallthrough
,强制执行下一个 case 代码块。
也可以改写 case 为多条件判断:
1 | func main() { |
27. 自增和自减运算
很多编程语言都自带前置后置的 ++
、--
运算。但 Go 特立独行,去掉了前置操作,同时 ++
、—
只作为运算符而非表达式。
1 | // 错误示例 |
28. 按位取反
很多编程语言使用 ~
作为一元按位取反(NOT)操作符,Go 重用 ^
XOR 操作符来按位取反:
1 | // 错误的取反操作 |
同时 ^
也是按位异或(XOR)操作符。
一个操作符能重用两次,是因为一元的 NOT 操作 NOT 0x02
,与二元的 XOR 操作 0x22 XOR 0xff
是一致的。
Go 也有特殊的操作符 AND NOT &^
操作符,不同位才取1。
1 | func main() { |
1 | 10000010 [A] |
29. 运算符的优先级
除了位清除(bit clear)操作符,Go 也有很多和其他语言一样的位操作符,但优先级另当别论。
1 | func main() { |
优先级列表:
1 | Precedence Operator |
30. 不导出的 struct 字段无法被 encode
以小写字母开头的字段成员是无法被外部直接访问的,所以 struct
在进行 json、xml、gob 等格式的 encode 操作时,这些私有字段会被忽略,导出时得到零值:
1 | func main() { |
31. 程序退出时还有 goroutine 在执行
程序默认不等所有 goroutine 都执行完才退出,这点需要特别注意:
1 | // 主程序会直接退出 |
如下,main()
主程序不等两个 goroutine 执行完就直接退出了:
常用解决办法:使用 “WaitGroup” 变量,它会让主程序等待所有 goroutine 执行完毕再退出。
如果你的 goroutine 要做消息的循环处理等耗时操作,可以向它们发送一条 kill
消息来关闭它们。或直接关闭一个它们都等待接收数据的 channel:
1 | // 等待所有 goroutine 执行完毕 |
执行结果:
看起来好像 goroutine 都执行完了,然而报错:
fatal error: all goroutines are asleep - deadlock!
为什么会发生死锁?goroutine 在退出前调用了 wg.Done()
,程序应该正常退出的。
原因是 goroutine 得到的 “WaitGroup” 变量是 var wg WaitGroup
的一份拷贝值,即 doIt()
传参只传值。所以哪怕在每个 goroutine 中都调用了 wg.Done()
, 主程序中的 wg
变量并不会受到影响。
1 | // 等待所有 goroutine 执行完毕 |
运行效果:
32. 向无缓冲的 channel 发送数据,只要 receiver 准备好了就会立刻返回
只有在数据被 receiver 处理时,sender 才会阻塞。因运行环境而异,在 sender 发送完数据后,receiver 的 goroutine 可能没有足够的时间处理下一个数据。如:
1 | func main() { |
运行效果:
33. 向已关闭的 channel 发送数据会造成 panic
从已关闭的 channel 接收数据是安全的:
接收状态值 ok
是 false
时表明 channel 中已没有数据可以接收了。类似的,从有缓冲的 channel 中接收数据,缓存的数据获取完再没有数据可取时,状态值也是 false
向已关闭的 channel 中发送数据会造成 panic:
1 | func main() { |
运行结果:
针对上边有 bug 的这个例子,可使用一个废弃 channel done
来告诉剩余的 goroutine 无需再向 ch 发送数据。此时 <- done
的结果是 {}
:
1 | func main() { |
运行效果:
34. 使用了值为 nil
的 channel
在一个值为 nil 的 channel 上发送和接收数据将永久阻塞:
1 | func main() { |
runtime 死锁错误:
fatal error: all goroutines are asleep - deadlock!
goroutine 1 [chan receive (nil chan)]
利用这个死锁的特性,可以用在 select 中动态的打开和关闭 case 语句块:
1 | func main() { |
运行效果:
34. 若函数 receiver 传参是传值方式,则无法修改参数的原有值
方法 receiver 的参数与一般函数的参数类似:如果声明为值,那方法体得到的是一份参数的值拷贝,此时对参数的任何修改都不会对原有值产生影响。
除非 receiver 参数是 map 或 slice 类型的变量,并且是以指针方式更新 map 中的字段、slice 中的元素的,才会更新原有值:
1 | type data struct { |
运行结果:
中级篇:35-50
35. 关闭 HTTP 的响应体
使用 HTTP 标准库发起请求、获取响应时,即使你不从响应中读取任何数据或响应为空,都需要手动关闭响应体。新手很容易忘记手动关闭,或者写在了错误的位置:
1 | // 请求失败造成 panic |
上边的代码能正确发起请求,但是一旦请求失败,变量 resp
值为 nil
,造成 panic:
panic: runtime error: invalid memory address or nil pointer dereference
应该先检查 HTTP 响应错误为 nil
,再调用 resp.Body.Close()
来关闭响应体:
1 | // 大多数情况正确的示例 |
输出:
Get https://api.ipify.org?format=json: x509: certificate signed by unknown authority
绝大多数请求失败的情况下,resp
的值为 nil
且 err
为 non-nil
。但如果你得到的是重定向错误,那它俩的值都是 non-nil
,最后依旧可能发生内存泄露。2 个解决办法:
- 可以直接在处理 HTTP 响应错误的代码块中,直接关闭非 nil 的响应体。
- 手动调用
defer
来关闭响应体:
1 | // 正确示例 |
resp.Body.Close()
早先版本的实现是读取响应体的数据之后丢弃,保证了 keep-alive 的 HTTP 连接能重用处理不止一个请求。但 Go 的最新版本将读取并丢弃数据的任务交给了用户,如果你不处理,HTTP 连接可能会直接关闭而非重用,参考在 Go 1.5 版本文档。
如果程序大量重用 HTTP 长连接,你可能要在处理响应的逻辑代码中加入:
1 | _, err = io.Copy(ioutil.Discard, resp.Body) // 手动丢弃读取完毕的数据 |
如果你需要完整读取响应,上边的代码是需要写的。比如在解码 API 的 JSON 响应数据:
1 | json.NewDecoder(resp.Body).Decode(&data) |
36. 关闭 HTTP 连接
一些支持 HTTP1.1 或 HTTP1.0 配置了 connection: keep-alive
选项的服务器会保持一段时间的长连接。但标准库 “net/http” 的连接默认只在服务器主动要求关闭时才断开,所以你的程序可能会消耗完 socket 描述符。解决办法有 2 个,请求结束后:
- 直接设置请求变量的
Close
字段值为true
,每次请求结束后就会主动关闭连接。 - 设置 Header 请求头部选项
Connection: close
,然后服务器返回的响应头部也会有这个选项,此时 HTTP 标准库会主动断开连接。
1 | // 主动关闭连接 |
你可以创建一个自定义配置的 HTTP transport 客户端,用来取消 HTTP 全局的复用连接:
1 | func main() { |
根据需求选择使用场景:
- 若你的程序要向同一服务器发大量请求,使用默认的保持长连接。
- 若你的程序要连接大量的服务器,且每台服务器只请求一两次,那收到请求后直接关闭连接。或增加最大文件打开数
fs.file-max
的值。
37. 将 JSON 中的数字解码为 interface 类型
在 encode/decode JSON 数据时,Go 默认会将数值当做 float64 处理,比如下边的代码会造成 panic:
1 | func main() { |
panic: interface conversion: interface {} is float64, not int
如果你尝试 decode 的 JSON 字段是整型,你可以:
将 int 值转为 float 统一使用
将 decode 后需要的 float 值转为 int 使用
1 | // 将 decode 的值转为 int 使用 |
- 使用
Decoder
类型来 decode JSON 数据,明确表示字段的值类型
1 | // 指定字段类型 |
- 使用 struct
类型将你需要的数据映射为数值型
1 | // struct 中指定字段类型 |
可以使用
struct
将数值类型映射为json.RawMessage
原生数据类型适用于如果 JSON 数据不着急 decode 或 JSON 某个字段的值类型不固定等情况:
1 | // 状态名称可能是 int 也可能是 string,指定为 json.RawMessage 类型 |
38. struct、array、slice 和 map 的值比较
可以使用相等运算符 ==
来比较结构体变量,前提是两个结构体的成员都是可比较的类型:
1 | type data struct { |
如果两个结构体中有任意成员是不可比较的,将会造成编译错误。注意数组成员只有在数组元素可比较时候才可比较。
1 | type data struct { |
invalid operation: v1 == v2 (struct containing [10]func() bool cannot be compared)
Go 提供了一些库函数来比较那些无法使用 ==
比较的变量,比如使用 “reflect” 包的 DeepEqual()
:
1 | // 比较相等运算符无法比较的元素 |
这种比较方式可能比较慢,根据你的程序需求来使用。DeepEqual()
还有其他用法:
1 | func main() { |
注意:
DeepEqual()
并不总适合于比较 slice
1 | func main() { |
如果要大小写不敏感来比较 byte 或 string 中的英文文本,可以使用 “bytes” 或 “strings” 包的 ToUpper()
和 ToLower()
函数。比较其他语言的 byte 或 string,应使用 bytes.EqualFold()
和 strings.EqualFold()
如果 byte slice 中含有验证用户身份的数据(密文哈希、token 等),不应再使用 reflect.DeepEqual()
、bytes.Equal()
、 bytes.Compare()
。这三个函数容易对程序造成 timing attacks,此时应使用 “crypto/subtle” 包中的 subtle.ConstantTimeCompare()
等函数
reflect.DeepEqual()
认为空 slice 与 nil slice 并不相等,但注意byte.Equal()
会认为二者相等:
1 | func main() { |
39. 从 panic 中恢复
在一个 defer 延迟执行的函数中调用 recover()
,它便能捕捉 / 中断 panic
1 | // 错误的 recover 调用示例 |
从上边可以看出,recover()
仅在 defer 执行的函数中调用才会生效。
1 | // 错误的调用示例 |
recobered:
panic: not good
40. 在 range 迭代 slice、array、map 时通过更新引用来更新元素
在 range 迭代中,得到的值其实是元素的一份值拷贝,更新拷贝并不会更改原来的元素,即是拷贝的地址并不是原有元素的地址:
1 | func main() { |
如果要修改原有元素的值,应该使用索引直接访问:
1 | func main() { |
如果你的集合保存的是指向值的指针,需稍作修改。依旧需要使用索引访问元素,不过可以使用 range 出来的元素直接更新原有值:
1 | func main() { |
41. slice 中隐藏的数据
从 slice 中重新切出新 slice 时,新 slice 会引用原 slice 的底层数组。如果跳了这个坑,程序可能会分配大量的临时 slice 来指向原底层数组的部分数据,将导致难以预料的内存使用。
1 | func get() []byte { |
可以通过拷贝临时 slice 的数据,而不是重新切片来解决:
1 | func get() (res []byte) { |
42. Slice 中数据的误用
举个简单例子,重写文件路径(存储在 slice 中)
分割路径来指向每个不同级的目录,修改第一个目录名再重组子目录名,创建新路径:
1 | // 错误使用 slice 的拼接示例 |
拼接的结果不是正确的 AAAAsuffix/BBBBBBBBB
,因为 dir1、 dir2 两个 slice 引用的数据都是 path
的底层数组,第 13 行修改 dir1
同时也修改了 path
,也导致了 dir2
的修改
解决方法:
- 重新分配新的 slice 并拷贝你需要的数据
- 使用完整的 slice 表达式:
input[low:high:max]
,容量便调整为 max - low
1 | // 使用 full slice expression |
第 6 行中第三个参数是用来控制 dir1 的新容量,再往 dir1 中 append 超额元素时,将分配新的 buffer 来保存。而不是覆盖原来的 path 底层数组
43. 旧 slice
当你从一个已存在的 slice 创建新 slice 时,二者的数据指向相同的底层数组。如果你的程序使用这个特性,那需要注意 “旧”(stale) slice 问题。
某些情况下,向一个 slice 中追加元素而它指向的底层数组容量不足时,将会重新分配一个新数组来存储数据。而其他 slice 还指向原来的旧底层数组。
1 | // 超过容量将重新分配数组来拷贝值、重新存储 |
44. 类型声明与方法
从一个现有的非 interface 类型创建新类型时,并不会继承原有的方法:
1 | // 定义 Mutex 的自定义类型 |
mtx.Lock undefined (type myMutex has no field or method Lock)…
如果你需要使用原类型的方法,可将原类型以匿名字段的形式嵌到你定义的新 struct 中:
1 | // 类型以字段形式直接嵌入 |
interface 类型声明也保留它的方法集:
1 | type myLocker sync.Locker |
45. 跳出 for-switch 和 for-select 代码块
没有指定标签的 break 只会跳出 switch/select 语句,若不能使用 return 语句跳出的话,可为 break 跳出标签指定的代码块:
1 | // break 配合 label 跳出指定代码块 |
goto
虽然也能跳转到指定位置,但依旧会再次进入 for-switch,死循环。
46. for 语句中的迭代变量与闭包函数
for 语句中的迭代变量在每次迭代中都会重用,即 for 中创建的闭包函数接收到的参数始终是同一个变量,在 goroutine 开始执行时都会得到同一个迭代值:
1 | func main() { |
最简单的解决方法:无需修改 goroutine 函数,在 for 内部使用局部变量保存迭代值,再传参:
1 | func main() { |
另一个解决方法:直接将当前的迭代值以参数形式传递给匿名函数:
1 | func main() { |
注意下边这个稍复杂的 3 个示例区别:
1 | type field struct { |
47. defer 函数的参数值
对 defer 延迟执行的函数,它的参数会在声明时候就会求出具体值,而不是在执行时才求值:
1 | // 在 defer 函数中参数会提前求值 |
result: 2
48. defer 函数的执行时机
对 defer 延迟执行的函数,会在调用它的函数结束时执行,而不是在调用它的语句块结束时执行,注意区分开。
比如在一个长时间执行的函数里,内部 for 循环中使用 defer 来清理每次迭代产生的资源调用,就会出现问题:
1 | // 命令行参数指定目录名 |
先创建 10000 个文件:
1 | !/bin/bash |
运行效果:
解决办法:defer 延迟执行的函数写入匿名函数中:
1 | // 目录遍历正常 |
当然你也可以去掉 defer,在文件资源使用完毕后,直接调用 f.Close()
来关闭。
49. 失败的类型断言
在类型断言语句中,断言失败则会返回目标类型的“零值”,断言变量与原来变量混用可能出现异常情况:
1 | // 错误示例 |
50. 阻塞的 gorutinue 与资源泄露
在 2012 年 Google I/O 大会上,Rob Pike 的 Go Concurrency Patterns 演讲讨论 Go 的几种基本并发模式,如 完整代码 中从数据集中获取第一条数据的函数:
1 | func First(query string, replicas []Search) Result { |
在搜索重复时依旧每次都起一个 goroutine 去处理,每个 goroutine 都把它的搜索结果发送到结果 channel 中,channel 中收到的第一条数据会直接返回。
返回完第一条数据后,其他 goroutine 的搜索结果怎么处理?他们自己的协程如何处理?
在 First()
中的结果 channel 是无缓冲的,这意味着只有第一个 goroutine 能返回,由于没有 receiver,其他的 goroutine 会在发送上一直阻塞。如果你大量调用,则可能造成资源泄露。
为避免泄露,你应该确保所有的 goroutine 都能正确退出,有 2 个解决方法:
- 使用带缓冲的 channel,确保能接收全部 goroutine 的返回结果:
1 | func First(query string, replicas ...Search) Result { |
使用
select
语句,配合能保存一个缓冲值的 channeldefault
语句:default
的缓冲 channel 保证了即使结果 channel 收不到数据,也不会阻塞 goroutine
1 | func First(query string, replicas ...Search) Result { |
- 使用特殊的废弃(cancellation) channel 来中断剩余 goroutine 的执行:
1 | func First(query string, replicas ...Search) Result { |
Rob Pike 为了简化演示,没有提及演讲代码中存在的这些问题。不过对于新手来说,可能会不加思考直接使用。
高级篇:51-57
51. 使用指针作为方法的 receiver
只要值是可寻址的,就可以在值上直接调用指针方法。即是对一个方法,它的 receiver 是指针就足矣。
但不是所有值都是可寻址的,比如 map 类型的元素、通过 interface 引用的变量:
1 | type data struct { |
cannot use data literal (type data) as type printer in assignment:
data does not implement printer (print method has pointer receiver)
cannot call pointer method on m[“x”]
cannot take the address of m[“x”]
52. 更新 map 字段的值
如果 map 一个字段的值是 struct 类型,则无法直接更新该 struct 的单个字段:
1 | // 无法直接更新 struct 的字段值 |
cannot assign to struct field m[“x”].name in map
因为 map 中的元素是不可寻址的。需区分开的是,slice 的元素可寻址:
1 | type data struct { |
注意:不久前 gccgo 编译器可更新 map struct 元素的字段值,不过很快便修复了,官方认为是 Go1.3 的潜在特性,无需及时实现,依旧在 todo list 中。
更新 map 中 struct 元素的字段值,有 2 个方法:
- 使用局部变量
1 | // 提取整个 struct 到局部变量中,修改字段值后再整个赋值 |
- 使用指向元素的 map 指针
1 | func main() { |
但是要注意下边这种误用:
1 | func main() { |
panic: runtime error: invalid memory address or nil pointer dereference
53. nil interface 和 nil interface 值
虽然 interface 看起来像指针类型,但它不是。interface 类型的变量只有在类型和值均为 nil 时才为 nil
如果你的 interface 变量的值是跟随其他变量变化的(雾),与 nil 比较相等时小心:
1 | func main() { |
如果你的函数返回值类型是 interface,更要小心这个坑:
1 | // 错误示例 |
54. 堆栈变量
你并不总是清楚你的变量是分配到了堆还是栈。
在 C++ 中使用 new
创建的变量总是分配到堆内存上的,但在 Go 中即使使用 new()
、make()
来创建变量,变量为内存分配位置依旧归 Go 编译器管。
Go 编译器会根据变量的大小及其 “escape analysis” 的结果来决定变量的存储位置,故能准确返回本地变量的地址,这在 C/C++ 中是不行的。
在 go build 或 go run 时,加入 -m 参数,能准确分析程序的变量分配位置:
55. GOMAXPROCS、Concurrency(并发)and Parallelism(并行)
Go 1.4 及以下版本,程序只会使用 1 个执行上下文 / OS 线程,即任何时间都最多只有 1 个 goroutine 在执行。
Go 1.5 版本将可执行上下文的数量设置为 runtime.NumCPU()
返回的逻辑 CPU 核心数,这个数与系统实际总的 CPU 逻辑核心数是否一致,取决于你的 CPU 分配给程序的核心数,可以使用 GOMAXPROCS
环境变量或者动态的使用 runtime.GOMAXPROCS()
来调整。
误区:GOMAXPROCS
表示执行 goroutine 的 CPU 核心数,参考文档
GOMAXPROCS
的值是可以超过 CPU 的实际数量的,在 1.5 中最大为 256
1 | func main() { |
56. 读写操作的重新排序
Go 可能会重排一些操作的执行顺序,可以保证在一个 goroutine 中操作是顺序执行的,但不保证多 goroutine 的执行顺序:
1 | var _ = runtime.GOMAXPROCS(3) |
运行效果:
如果你想保持多 goroutine 像代码中的那样顺序执行,可以使用 channel 或 sync 包中的锁机制等。
57. 优先调度
你的程序可能出现一个 goroutine 在运行时阻止了其他 goroutine 的运行,比如程序中有一个不让调度器运行的 for
循环:
1 | func main() { |
for
的循环体不必为空,但如果代码不会触发调度器执行,将出现问题。
调度器会在 GC、Go 声明、阻塞 channel、阻塞系统调用和锁操作后再执行,也会在非内联函数调用时执行:
1 | func main() { |
可以添加 -m
参数来分析 for
代码块中调用的内联函数:
你也可以使用 runtime 包中的 Gosched()
来 手动启动调度器:
1 | func main() { |
运行效果:
总结
感谢原作者 kcqon 总结的这篇博客,让我受益匪浅。
由于译者水平有限,不免出现理解失误,望读者在下评论区指出,不胜感激。
后续再更新类似高质量文章的翻译 😍